skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Sangho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 12, 2025
  2. The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers. 
    more » « less
  3. Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems. 
    more » « less
  4. Investigating attacks across multiple hosts is challenging. The true dependencies between security-sensitive files, network endpoints, or memory objects from different hosts can be easily concealed by dependency explosion or undefined program behavior (e.g., memory corruption). Dynamic information flow tracking (DIFT) is a potential solution to this problem, but, existing DIFT techniques only track information flow within a single host and lack an efficient mechanism to maintain and synchronize the data flow tags globally across multiple hosts. In this paper, we propose RTAG, an efficient data flow tagging and tracking mechanism that enables practical cross-host attack investigations. RTAG is based on three novel techniques. First, by using a record-and-replay technique, it decouples the dependencies between different data flow tags from the analysis, enabling lazy synchronization between independent and parallel DIFT instances of different hosts. Second, it takes advantage of systemcall-level provenance information to calculate and allocate the optimal tag map in terms of memory consumption. Third, it embeds tag information into network packets to track cross-host data flows with less than 0.05% network bandwidth overhead. Evaluation results show that RTAG is able to recover the true data flows of realistic cross-host attack scenarios. Performance wise, RTAG reduces the memory consumption of DIFT-based analysis by up to 90% and decreases the overall analysis time by 60%-90% compared with previous investigation systems. 
    more » « less